GSG-62
L1+L2 Dual Frequency 32-channel Multi-GNSS Simulator

- Simultaneous L1 and L2 frequencies for both P-code (unencrypted) and C/A code
- Simultaneous GLONASS and GPS P-code and C/A codes at both L1 and L2
- Versatile 32-channel GNSS signal generator with pre-configured test scenarios
- Operates with StudioView™ for easy trajectory creation via Google Maps
- SBAS simulation: WAAS (N. America), EGNOS (Europe), GAGAN (India), MSAS (Japan)
- Configurable multipath simulation
- White noise generator for SNR testing
- Configurable interference simulation
- Fully operational via front-panel, web-based remote control, or SCPI protocol
- Multiple interfaces for remote control: Ethernet, USB, GPIB
- Affordable, powerful, and easy-to-use

The GSG-62 is the first offering of the new GSG-6 Series family of simulators from Spectracom. The Series 6 family offers multiple frequency band operation, multiple GNSS constellation simulation, and expansion to many more channels. Incorporating all of the features of the popular Series 5 family, the Series 6 line expands your capability to simulate all the new, emerging GNSS signals. The Series 6 simulator protects your investment by being upgradeable in the future to more frequency bands and channels (plug-in hardware upgrade) and more signal formats (firmware upgrade).

Easy to Use
The GSG Series user can configure scenarios on-the-fly without the need for an external PC and pre-compilation phase. Via the front panel, the user can swiftly modify parameters such as user position, time and specify output powers in carrier-to-noise ratio instead of absolute output power. Utilizing the white noise generation extends the usability and flexibility. And using the optional StudioView™ software facilitates easily created scenarios via a Google Maps interface.

Flexibility
The GSG-62 multi-channel simulator makes it possible to simulate all the visible satellites for the receiver under test. With 16 channels for L1 and 16 channels for L2, these channels can be assigned to either GPS or GLONASS, P-code or C/A code. Or some of these channels can be used for SBAS simulation of EGNOS, WAAS, GAGAN, or MSAS satellites, or for simulating multipath or interference. If more channels are required, simply synchronize two or more units via the external 1PPS sync signal to generate 64, 96, or more channel simulation. Some restrictions apply.

GSG-6 Series is shipped with several multipath scenarios where the receivers’ response to an increased multipath environment can be analyzed. It also has a set of built-in trajectories (static, configurable circle, and rectangular as defined in 3GPP TS 25.171) or the user can upload their own trajectories in NMEA standard format. The user can upload their own ephemeris data in standard RINEX format or re-use the default data for any time periods. The GSG-62 can even automatically download historical RINEX, WAAS and EGNOS data from official websites, as needed.

Connectivity Extends Ease of Use and Flexibility
The GSG-6 Series can be controlled via an Ethernet network connection, USB or GPIB. A built-in web interface allows complete operation of the instrument through front panel controls. With the optional GSG StudioView™ PC Software, you can build, edit, and manage the most complex scenarios, including building trajectories via Google Maps, independent of the GSG unit, for later upload.

Suitable for Testing Timing Receivers
Besides the variety of built-in navigation/positioning tests, the GSG-62 is also suited for accurate testing of timing GPS-
receivers. The GSG-62 is equipped with an ultra-high-stability OCXO timebase for precision timing of the satellite data, or use external synchronization from a 10 MHz reference from e.g. a Cesium or Rubidium clock. A built-in 1-pps output, synchronized to the generated satellite data, allows comparison with the 1-pps signal from the timing receiver under test.

The Affordable Test Solution
The GSG-62 is a perfect fit for a wide-variety of test cases including:
- Testing of military SAASM receivers and high-end survey grade civilian receivers.
- Test of simulated movements (user trajectories).
- Test of receivers’ sensitivity to loss of satellites, multi-path, leap seconds, and atmospheric conditions.
- Fast production test of sensitivity and positioning receivers’ accuracy (conducted or over-the-air).
- Test of timing receiver accuracy.
- Test of receivers’ dynamic range.
- Test of receivers’ susceptibility for noise [SNR limit testing].
- Test of leap second transition.

Input and Output Specifications

RF Signal L1 and L2, GLONASS+GPS
Connector: Type N female
Frequency:
L1: 1560 - 1620 MHz (16 output channels)
L2: 1212 - 1255 MHz (16 output channels)
Number of output channels: 32
Channel configuration:
Any channel can be GPS or GLONASS
GLONASS freq ch -7 to +6
Up to 3 SBAS satellites (instead of 1-3 GNSS satellites)
Data format:
50 bits/s, GPS and GLONASS frame structure
250 bits/s, SBAS
PRN codes: 1 to 210, plus GLONASS
Spurious transmission: <40 dBc
Harmonics: <40 dB
Output signal level: -65 to -160 dBm; 0.1 dB resolution down to -150 dBm; 0.3 dB down to -160 dBm.
Power accuracy: ±1.0 dB
Pseudorange accuracy: 1 mm
Inter-channel bias: Zero
Inter-channel range: >54 dB
Limit:
- Altitude: 18,240 m (60,000 feet)
- Acceleration: 4.0 g
- Velocity: 515 m/s (1000 knots)
- Jerk: 20 m/s³
Order GSG-62E to extend these limits to:
- Altitude: 20,200 km
- Acceleration: No limit
- Velocity: 20,000 m/s (38874 knots)
- Jerk: No limit

White noise signal level: 0.5 to -160 dBm
0.1 dB resolution down to -150 dBm;
0.3 dB down to -160 dBm.
±1.0 dB accuracy

External Frequency Reference Input
Connector: BNC female
Frequency: 10 MHz nominal
Input signal level: 0.1 to 5 Vrms
Input impedance: >1kΩ

Frequency Reference Output
Connector: BNC female
Frequency: 10 MHz sine
Output signal level: ±1 Vrms in to 50 Ω load

External Trigger Input
Connector: BNC female
Frequency: 10 MHz sine
Output signal level: ±1 Vrms in to 50 Ω load

1PPS Output
Connector: BNC female
Output signal level: approx. 0 V to +2.0 V in 50 Ω load
Accuracy: Calibrated to ±1 nS of RF timing mark output

Built-in Timebase
Internal Timebase – High Stability OCXO
Ageing per 24 h: <5x10⁻¹⁰
Ageing per year: <5x10⁻⁹
Temp. variation 0°C to 50°C: <5x10⁻⁹
Short term stability (Adev @1s): <5x10⁻¹²

Auxiliary Functions
Interface
GPIB (IEEE-488.2), USB 1.X or 2.X (USB-TMC-488), Ethernet (100/10 Mbps)

Settings
Predefined scenarios: 12;
User can change date, time, position, trajectory, number of satellites, satellite power level and atmospheric model
User defined scenarios: Unlimited
Trajectory data: NMEA format (GGA or RMC messages, or both), convert from other formats with GSG StudioView™ (see separate datasheet)

General Specifications

Certifications
Safety: Designed and tested for Measurement Category I, Pollution Degree 2, in accordance with EN/IEC 61010-1:2001 and CAN/CSA-C22.2 No. 61010-1-04 (incl. approval)
EMC: EN 61326-1:2006, increased test levels per EN 61000-6-3:2001 and EN 61000-6-2:2005

Dimensions
WxHxD: 210 x 90 x 395 mm (8.25” x 3.6” x 15.6”)
Weight: approx. 2.7 kg (approx. 5.8 lb)

Spectracom is a business of the Orolia Group. © 2012 Orolia USA, Inc.

www.spectracomcorp.com